
http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm
Copyright © tutorialspoint.com

SOFTWARE ENGINEERING OVERVIEW

Let us first understand what software engineering stands for. The term is made of two
words, software and engineering.

Software is more than just a program code. A program is an executable code, which
serves some computational purpose. Software is considered to be collection of
executable programming code, associated libraries and documentations. Software,
when made for a specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined,
scientific principles and methods.

Software engineering is an engineering branch associated with development of
software product using well-defined scientific principles, methods and procedures.
The outcome of software engineering is an efficient and reliable software product.

Definitions

http://www.tutorialspoint.com/software_engineering/software_engineering_overview.htm


IEEE defines software engineering as:

(1) The application of a systematic,disciplined,quantifiable approach to
the development,operation and maintenance of software; that is, the
application of engineering to software.

(2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound engineering
principles in order to obtain economically software that is reliable and
work efficiently on real machines.

Software Evolution

The process of developing a software product using software engineering principles
and methods is referred to as software evolution. This includes the initial development
of software and its maintenance and updates, till desired software product is
developed, which satisfies the expected requirements.

Evolution starts from the requirement gathering process. After which developers create
a prototype of the intended software and show it to the users to get their feedback at
the early stage of software product development. The users suggest changes, on which
several consecutive updates and maintenance keep on changing too. This process
changes to the original software, till the desired software is accomplished.

Even after the user has desired software in hand, the advancing technology and the



changing requirements force the software product to change accordingly. Re-creating
software from scratch and to go one-on-one with requirement is not feasible. The only
feasible and economical solution is to update the existing software so that it matches
the latest requirements.

Software Evolution Laws

Lehman has given laws for software evolution. He divided the software into three
different categories:

S-type (static-type) - This is a software, which works strictly according to defined
specifications and solutions. The solution and the method to achieve it, both are
immediately understood before coding. The s-type software is least subjected to
changes hence this is the simplest of all. For example, calculator program for
mathematical computation.

P-type (practical-type) - This is a software with a collection of procedures. This
is defined by exactly what procedures can do. In this software, the specifications
can be described but the solution is not obvious instantly. For example, gaming
software.

E-type (embedded-type) - This software works closely as the requirement of real-
world environment. This software has a high degree of evolution as there are
various changes in laws, taxes etc. in the real world situations. For example,
Online trading software.

E-Type software evolution

Lehman has given eight laws for E-Type software evolution -

Continuing change - An E-type software system must continue to adapt to the
real world changes, else it becomes progressively less useful.

Increasing complexity - As an E-type software system evolves, its complexity
tends to increase unless work is done to maintain or reduce it.

Conservation of familiarity - The familiarity with the software or the knowledge
about how it was developed, why was it developed in that particular manner etc.
must be retained at any cost, to implement the changes in the system.

Continuing growth- In order for an E-type system intended to resolve some
business problem, its size of implementing the changes grows according to the
lifestyle changes of the business.

Reducing quality - An E-type software system declines in quality unless
rigorously maintained and adapted to a changing operational environment.

Feedback systems- The E-type software systems constitute multi-loop, multi-
level feedback systems and must be treated as such to be successfully modified or
improved.

Self-regulation - E-type system evolution processes are self-regulating with the



distribution of product and process measures close to normal.

Organizational stability - The average effective global activity rate in an evolving
E-type system is invariant over the lifetime of the product.

Software Paradigms

Software paradigms refer to the methods and steps, which are taken while designing
the software. There are many methods proposed and are in work today, but we need to
see where in the software engineering these paradigms stand. These can be combined
into various categories, though each of them is contained in one another:

Programming paradigm is a subset of Software design paradigm which is further a
subset of Software development paradigm.

Software Development Paradigm

This Paradigm is known as software engineering paradigms where all the engineering
concepts pertaining to the development of software are applied. It includes various
researches and requirement gathering which helps the software product to build. It
consists of –

Requirement gathering

Software design

Programming



Software Design Paradigm

This paradigm is a part of Software Development and includes –

Design

Maintenance

Programming

Programming Paradigm

This paradigm is related closely to programming aspect of software development. This
includes –

Coding

Testing

Integration

Need of Software Engineering

The need of software engineering arises because of higher rate of change in user
requirements and environment on which the software is working.

Large software - It is easier to build a wall than to a house or building, likewise,
as the size of software become large engineering has to step to give it a scientific
process.

Scalability- If the software process were not based on scientific and engineering
concepts, it would be easier to re-create new software than to scale an existing
one.

Cost- As hardware industry has shown its skills and huge manufacturing has
lower down he price of computer and electronic hardware. But the cost of
software remains high if proper process is not adapted.

Dynamic Nature- The always growing and adapting nature of software hugely
depends upon the environment in which user works. If the nature of software is
always changing, new enhancements need to be done in the existing one. This
is where software engineering plays a good role.

Quality Management- Better process of software development provides better
and quality software product.

Characteristics of good software

A software product can be judged by what it offers and how well it can be used. This
software must satisfy on the following grounds:



Operational

Transitional

Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

Operational

This tells us how well software works in operations. It can be measured on:

Budget

Usability

Efficiency

Correctness

Functionality

Dependability

Security

Safety

Transitional

This aspect is important when the software is moved from one platform to another:

Portability

Interoperability

Reusability

Adaptability

Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in
the ever-changing environment:

Modularity

Maintainability

Flexibility

Scalability

In short, Software engineering is a branch of computer science, which uses well-
defined engineering concepts required to produce efficient, durable, scalable, in-



budget and on-time software products.


